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This article presents a novel constraint-based motion editing technique. On the basis of animator-specified kinematic and dynamic
constraints, the method converts a given captured or animated motion to a physically plausible motion. In contrast to previous
methods using spacetime optimization, we cast the motion editing problem as a constrained state estimation problem, based
on the per-frame Kalman filter framework. The method works as a filter that sequentially scans the input motion to produce a
stream of output motion frames at a stable interactive rate. Animators can tune several filter parameters to adjust to different
motions, turn the constraints on or off based on their contributions to the final result, or provide a rough sketch (kinematic hint)
as an effective way of producing the desired motion. Experiments on various systems show that the technique processes the
motions of a human with 54 degrees of freedom, at about 150 fps when only kinematic constraints are applied, and at about
10 fps when both kinematic and dynamic constraints are applied. Experiments on various types of motion show that the proposed
method produces remarkably realistic animations.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Animation; I.2.9
[Artificial Intelligence]: Robotics—Kinematics and Dynamics

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: Motion retargeting, animation w/constraints, physically based animation

1. INTRODUCTION

Motion editing is an active research problem in computer animation. Its function is to convert the motion
of a source subject or character into a new motion of a target character while satisfying a given set of
kinematic and dynamic constraints, as shown schematically in Figure 1. This type of motion editing,
in which the animator specifies what they want in the form of constraints, is called constraint-based
motion editing, and has been studied by numerous researchers [Gleicher 1998; Lee and Shin 1999; Choi
and Ko 2000; Popović and Witkin 1999; Shin et al. 2001].

Motion editing must compensate for both body differences and motion differences. When the an-
thropometric scale of the target character differs from that of the source character, the original motion
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Fig. 1. The constraint-based motion editing problem.

should be kinematically retargeted to the new character. Characteristics that affect body dynamics, such
as segment weights and joint strengths, should be accounted for if we are to generate a dynamically
plausible motion of the target character. For example, the kicking motion of a professional soccer player
cannot be reproduced by an unskilled person of equivalent anthropometric characteristics. Therefore,
the motion editing algorithm should resolve both the kinematic and dynamic aspects of the source-to-
target body differences. In addition, motion editing should provide means to create variations from the
original motion. For example, starting from an original walking motion on a level surface, an animator
may need to create longer steps or uphill steps.

This article proposes a novel constraint-based motion editing technique that differs significantly from
existing methods in that it is a per-frame algorithm. The traditionally employed spacetime optimization
methods can be used for interactive editing of short motion sequences and produce physically plausible
motions. However, the processing times of these methods increase proportional (or at a higher rate) to
the length of the motion sequence. In contrast, our algorithm functions as a filter of the original motion
that processes the sequence of frames in a pipeline fashion. Thus, the animator can view the processed
frames at a stable interactive rate as soon as the filter has started processing the motion, rather than
having to wait for all frames to be processed as is the case in spacetime optimization methods.

The per-frame approach has previously been taken by several researchers for the kinematic motion
editing problem in which only kinematic constraints are imposed [Lee and Shin 1999; Choi and Ko
2000; Shin et al. 2001]. However, the problem of motion editing with both kinematic and dynamic con-
straints poses two significant challenges. (1) Dynamic constraints are highly nonlinear, compared to
kinematic constraints. Such nonlinearity prohibits the constraint solver from reaching a convergent so-
lution within a reasonable amount of time. (2) Dynamic constraints involve velocities and accelerations,
whereas kinematic constraints involve only positions. It is this significant distinction that makes the
per-frame approach inherently difficult for dynamic constraints; kinematic constraints can be indepen-
dently formulated for individual frames, whereas the velocity and acceleration terms in the dynamic
constraint equations call for knowledge of quantities from other frames. The interdependency between
those terms makes the process look like a chain reaction, where imposing dynamic constraints at a
single frame, calls for the participation of the positions and velocities of the entire motion sequence.

We overcome the challenges outlined above by casting the motion editing problem as a constrained
state estimation problem, based on the Kalman filter framework. We make the method function as a
per-frame filter by incorporating the motion parameters and the desired constraints into a specialized
Kalman filter formulation. To handle the nonlinearity of complex constraints more accurately, we em-
ploy the unscented Kalman filter, which is reported to be superior in its accuracy to the other variants
of the Kalman filter or the Jacobian-based approximation [Wan and van der Merwe 2001].

To apply Kalman filtering to the problem of motion editing, however, we must treat the position, ve-
locity, and acceleration as independent degrees of freedom (DOFs). Under this treatment, the resulting
motion parameter values may violate the relationship that exists between the position, velocity, and
acceleration values describing a particular motion. We resolve this problem by processing the Kalman
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filter output with a least-squares curve fitting technique. We refer to this processing as the least-squares
filter. Unlike the Kalman filter that processes each frame independently, the least-squares filter requires
data over a certain range of frames for curve fitting.

Therefore, the proposed motion editing filter is basically a concatenation of the Kalman filter and the
least-squares filter. It functions as an enhancement operator; the first application of the filter may not
produce a completely convergent solution, but repeated applications refine the result until a reasonable
solution is reached. Such incremental refinement can be valuable in practice, because most animators
prefer to see a rough outline of the motion interactively before carrying out the longer calculation
necessary to obtain the final motion. Furthermore, they can provide a rough sketch of the desired
motion before the filtering begins, which is an effective way of reflecting their intuitive ideas as well as
overcoming the locality nature of the proposed algorithm.

Our motion editing technique is well suited for interactive applications; we can add or remove some
or all of the kinematic and dynamic constraints depending on whether they significantly affect the
type of motion being animated. When only kinematic constraints are imposed, one application of the
filter produces a convergent solution and the motion editing algorithm runs in real-time. As dynamic
constraints are added, the filter must be applied several times to obtain convergent results, but the
editing process still runs at an interactive speed.

2. RELATED WORK

The establishment of motion capture as a commonplace technique has heightened interest in meth-
ods for modifying or retargeting a captured motion to different characters. Motion editing/synthesizing
methods can be classified into four groups: (1) methods that involve only kinematic constraints, (2) meth-
ods that involve both kinematic and dynamic constraints, (3) the spacetime constraints methods that
do not exploit the captured motion, and (4) motion generating techniques based on dynamic simulation.

Gleicher [1997, 1998] formulated the kinematic version of the motion editing problem as a space-
time optimization over the entire motion. Lee and Shin [1999] decomposed the problem into per-frame
inverse kinematics, followed by curve fitting for motion smoothness. Choi and Ko [2000] developed
a retargeting algorithm that works online, which is based on the per-frame inverse rate control, but
avoids discontinuities by imposing motion similarity as a secondary task. Shin et al. [2001] proposed
a different online retargeting algorithm based on the dynamic importance of the end-effectors. A good
survey of the constraint-based motion editing methods is provided by Gleicher [2001]. The way our
motion editing technique works most resembles the approach of Lee and Shin [1999], in that both tech-
niques are per-frame methods with a post-filter operation. However, in our method, the post-filter is
applied only to recently processed frames and, as a consequence, the whole process works as a per-frame
filter.

It is interesting to note that the methods based on kinematic constraints quite effectively generate
useful variations of the original motion. However, when the dynamic context is significantly different in
the source and target motions, the motion generated by kinematic editing is unacceptable. Pollard et al.
[2000] proposed a force-scaling technique for fast motion transformation. Tak et al. [2000] introduced
a spacetime optimization technique for correcting a given motion into a dynamically balanced one.
Popović and Witkin [1999] addressed the physically-based motion editing problem using spacetime
optimization. Because optimization, subject to dynamic constraints (i.e. Newton’s law), can take a
prohibitive amount of computation, they introduced a character simplification technique to make the
problem tractable. The most significant distinction between our method and spacetime optimization
methods is that, instead of looking at the entire duration of a motion, our technique works on a per-
frame basis. As a result, the outcome of each frame is available at a uniform interactive rate, since it
requires a deterministic amount of computation.
ACM Transactions on Graphics, Vol. 24, No. 1, January 2005.
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An interesting work that solves the retargeting problem in the robotics context is Yamane and
Nakamura [2000, 2003], which is similar to our approach in that it transforms a given motion into
a physically consistent one on a per-frame basis. Their dynamics filter first computes the desired ac-
celerations by feedback controllers referring to the reference motion, and then modifies the result by
projection to the null-space of the equation of motion to make it a dynamically consistent one. Our
approach differs from theirs in that we use an iterative algorithm that consists of two consecutive fil-
ters and we process position, velocity, and acceleration simultaneously rather than acceleration alone,
thus increasing the applicability. For the same reason, it is difficult to control kinematic constraints in
their method, since they deal with only accelerations in the filtering process and then integrate them to
obtain the final positional data. Also, as they pointed out in the paper, the sensitiveness to the reference
motion which causes filter divergence and the difficulty of tuning parameters (feedback gains, pseu-
doinverse weights) are unsolved problems. Another recent work similar to ours is Shin et al. [2003],
which improves physical plausibility of edited motions by enforcing ZMP constraints and momentum
constraints. While our method is an iterative filtering process over all DOFs, they sequentially adjusted
user-specified individual DOF using approximated closed-form dynamic equations for efficiency.

Many of the kinematic and physically-based motion editing techniques mentioned above derive from
the spacetime constraints method proposed by Witkin and Kass [1988]. However, when this original
method is applied to a complex articulated figure, the dimensional explosion and severe nonlinearity
of the problem usually leads to impractical computational loads or lack of convergence. Several groups
[Cohen 1992; Liu et al. 1994; Rose et al. 1996] have attempted to improve the classical spacetime
constraints algorithm and its applicability. In a recent work that synthesizes a dynamic motion from
a rough sketch, Liu and Popović [2002] circumvented the problems by approximating the Newtonian
dynamics with linear and angular momentum patterns during the motion. Another optimization-based
motion synthesis algorithm was proposed by Fang and Pollard [2003], which showed a linear-time
performance.

Our constraint solver is built on the Kalman filter framework. There have been several previous
attempts to treat constraints using the Kalman filter. Maybeck[1979] introduced the notion that the
Kalman filter can be used to solve linear constraints by regarding them as perfect measurements,
while other researchers [Geeter et al. 1997; Simon and Chia 2002] built constraint solvers based on the
extended Kalman filter to solve nonlinear constraints. However, as many researchers have pointed out
[Julier and Uhlmann 1997; Wan and van der Merwe 2000], the extended Kalman filter can produce
inaccurate results at nonlinearities. We used the unscented Kalman filter to better handle the severe
nonlinearities in the dynamic constraints. A good introduction to the Kalman filter can be found in
Welch and Bishop [2001].

The preliminary version of this work was presented in Tak et al. [2002]. In the current article,
we give a significantly improved exposition of the technique as well as extend the technique. The
formulation is now more rigorous, and the method is compared with other methods so that its limitations
and strengths are highlighted. By addressing momentum conservation in the flight phases, and the
redundancy problem during the double support phases, we widen the applicability of the algorithm.
New experiments that show the extended features are reported.

3. OVERVIEW

Figure 2 shows an outline of the overall structure of our motion editing process. Animators first provide
the input motion of the source character along with a set of kinematic and dynamic constraints. Then
a Kalman filter that is tailored to the motion editing problem produces the motion parameter values,
which are post-processed by the least-squares curve fitting module. We apply the Kalman filter and
least-squares filter repeatedly until it converges to an acceptable result.
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Fig. 2. Overall structure of the motion editing process.

Several important issues must be addressed in the implementation of the process outlined above:

—What kinds of constraints are needed to generate a desired motion? How should those constraints be
formulated? These issues are addressed in Section 4.

—How is the Kalman filter applied to our motion editing problem? The details are presented in Section 5.
—The Kalman filter processes position, velocity, and acceleration as independent variables, which can

corrupt the imperative relationship among those variables. How is this rectified by the least-squares
filter? This is explained in Section 6.

4. FORMULATING CONSTRAINTS

The collection of all the kinematic and dynamic constraints on the motion of a character with � DOFs
can be summarized into the form

H(q, q̇, q̈) = Z, (1)

where q = q(t) is the �-dimensional vector that completely describes the kinematic configuration of
the character at time t. This vector contains a mixture of positional and orientational quantities, but
when it is clear from the context, we call the entire vector simply the position.

The vector valued function H : R
3� → R

�̃ that maps a 3�-dimensional vector to a �̃ = �̃K + �̃B +
�̃T + �̃M dimensional vector can be written as

H(q, q̇, q̈) =




HK (q, q̇, q̈)
HB(q, q̇, q̈)
HT (q, q̇, q̈)
HM (q, q̇, q̈)


 . (2)

�̃K , �̃B, �̃T , and �̃M are the dimensions of the kinematic, balance, torque limit, and momentum
constraints, respectively. Therefore we can view the function H as a block matrix of the component
constraint functions HK , HB, HT , and HM , as shown in the right-hand side of Equation (2). The
values of �̃K , �̃B, �̃T , and �̃M depend on how each type of constraint participates in the current
editing process. For example, when only one end-effector position constraint is imposed, �̃K = 3. If an
additional orientational constraint is imposed, then �̃K becomes 6. Z is a �̃-dimensional vector that
does not contain any variables, and can be represented as the block matrix Z = [ZT

K ZT
B ZT

T ZT
M ]T .

The goals of this section are (1) to find the formulations for each of the component constraint functions
HK , HB, HT , and HM , and (2) to find the values for the component constraint goals ZK , ZB, ZT , and
ZM , which correspond to the constraints specified by the animators.

The constraint solver this article proposes requires only the formulation of the component functions,
but does not require their derivatives or inverse functions. Constraints are resolved by the black box
composed of the Kalman filter and least-squares filter.
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Fig. 3. The zero moment point (ZMP) and its trajectory correction.

4.1 Kinematic Constraints

Kinematic constraints specify the end-effectors to be positioned at the desired locations e by

hfk(q) = e, (3)

where the function hfk is the forward kinematic equations for the end-effectors under consideration.
Therefore, HK is simply formulated as

HK (q, q̇, q̈) = hfk(q), (4)

and the constraint goal is given by ZK = e.

4.2 Balance Constraints

Because humans are two-legged creatures, balancing is an important facet of their motion that must be
adequately captured if an animation is to appear realistic. Dynamic balance is closely related to the zero
moment point (ZMP), that is, the point at which the net moment of the inertial forces and gravitational
forces of all the body segments is zero [Vukobratović et al. 1990]. The ZMP, at a particular instant, is a
function of the character motion, and can be obtained by solving the following equation for Pzmp∑

i

[
(ri − Pzmp) × {mi (r̈i − g)}] = 0, (5)

where mi and ri are the mass and center of mass of the ith segment (Figure 3(a)), respectively, and g
is the acceleration of gravity.

In our work, we regard an animated motion to be dynamically balanced at time t if the projection P2D
zmp

of the ZMP is located inside the supporting area (the convex hull containing all the ground contacts).
Taking ri = (xi, yi, zi), g = (0, −g (≈ 9.8), 0), and setting the y component of Pzmp to zero, Equation (5)
produces the following analytical solution for P2D

zmp:

P2D
zmp =




∑
i mi ( ÿi+g )xi−

∑
i mi ẍi yi∑

i mi ( ÿi+g )∑
i mi ( ÿi+g )zi−

∑
i mi z̈i yi∑

i mi ( ÿi+g )


 = hzmp(q, q̇, q̈). (6)

Since ri and r̈i can be expressed by q, q̇, and q̈, we can view the above result as giving the formula for
the function hzmp(q, q̇, q̈).1 Some portions of P2D

zmp, obtained by evaluating the above formula, may lie

1Note that for a static posture, the ZMP in Equation (6) reduces to the center of gravity (
∑

i mi xi∑
i mi

,
∑

i mi zi∑
i mi

), the projection point of
the center of mass of the whole body, on the ground.
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outside the supporting area as shown in Figure 3(c). In our work, balancing is achieved by modifying
the motion (i.e. q, q̇, and q̈) such that hzmp(q, q̇, q̈) follows a new trajectory P̃2D

zmp given by

P̃2D
zmp(t) =

{
P2D

zmp(t) : if P2D
zmp(t) ∈ S

projS(P2D
zmp(t)) : otherwise

, (7)

where S is the supporting area and projS is the operator that projects the given point into the area S
as shown in Figure 3(c). Finally, the balance constraint is formulated as

HB(q, q̇, q̈) = hzmp(q, q̇, q̈), (8)

and ZB = P̃2D
zmp.

It should be noted that the notion of balance in this article is somewhat subtle, and different from the
usual meaning—not falling. A number of researchers in robotics and graphics have proposed balancing
techniques. One approach, based on the inverted pendulum model, ensures balanced motion by main-
taining the position and velocity of the center of gravity (COG) within a stable region [Faloutsos et al.
2001; Zordan and Hodgins 2002]. The same goal has also been achieved by tracking the ZMP trajectory
as an index of stability [Dasgupta and Nakamura 1999; Oshita and Makinouchi 2001; Sugihara et al.
2002]. In these previous studies, balancing was achieved by controlling the joint torques to prevent the
characters from falling.

If our objective is to analyze the moment of a legged figure with respect to the ground, we can
equivalently represent the figure as an inverted pendulum (Figure 3(b)). In this conceptualization,
the location of the pendulum base corresponds to the ZMP. In every real-world motion with a ground
contact, even in falling motion, the ZMP always lies within the supporting area2 [Vukobratović et al.
1990]. Physically, therefore, the ZMP is not related to the act of balancing. Rather, the ZMP concept
is related to physical validness. Physical validness has no meaning in real-world motions, but has a
significant meaning in motion editing. We can judge that a computer-generated motion is out of balance
if the motion is physically invalid according to the ZMP criterion. Our balance constraint formulation,
based on the ZMP, provides an effective way to modify a given motion to achieve dynamic balance.

4.3 Torque Limit Constraints

The torque a human can exert at each joint is limited. However, computer-generated human motion can
violate this principle, potentially giving rise to motions that look physically unrealistic or uncomfortable
[Lee et al. 1990; Ko and Badler 1996; Komura et al. 1999]. To address this issue, we allow animators to
specify torque limit constraints. The motion editing algorithm must, therefore, modify the given motion
such that the joint torques of the new motion are within the animator-specified limits. We need to find
the formulation of the function HT (q, q̇, q̈) and the goal ZT that achieves the modification.

First, we must calculate the torque profile of the original motion to see if it contains any torque limit
violations. We let τ (t) = [τ1(t) · · · τ�−6(t)]T be the torque vector at time t, which is the collection of the
scalar torques corresponding to the (�−6) joint DOFs. The inverse dynamics problem τ (t) = htrq(q, q̇, q̈)
has been extensively studied in the robotics literature [Craig 1989; Shabana 1994]. Here we use the O(�)
Newton-Euler method, which does not give an explicit formula for htrq(q, q̇, q̈), but instead recursively
computes the torque values. For the closed-loop formed during the double support phases, we resort to
the approximation method proposed by Ko and Badler [1996].

2During flight phases, however, the evaluation of P2D
zmp in Equation (6) results in dividing by zero, thus the ZMP is not defined.

This is consistent with our intuition that balance is a meaningful concept only when the body makes contact with the ground.
In flight phases, therefore, we deactivate the balance constraint. Detecting the initiation of the fight phase is done by examining
the positions of the feet. The simulation results are insensitive to the noise at the phase boundaries.
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When the torque τ j (t), computed as described above, exceeds the specified limit τmax
j , we reduce it to

the given limit. Thus, the corrected torque profile τ̃ j of joint j is given by

τ̃ j (t) =
{

τ j (t) : if τ j (t) ≤ τmax
j

τmax
j : otherwise

. (9)

In our implementation, the torque limit τmax
j was given by animators experimentally, but can also be

determined using joint strength data from the biomechanics [Winter 1990].
Finally, the torque constraints are formulated as

HT (q, q̇, q̈) = htrq(q, q̇, q̈), (10)

with ZT = τ̃ .

4.4 Momentum Constraints

The momentum constraints are derived from Newton’s second law, which states that the rates of change
of the linear and angular momenta are equal to the sums of the resultant forces and moments acting
on the figure, respectively. In the supporting phases, the interaction between the feet and the ground
leads to quite complex patterns in the character’s momentum behavior. Therefore, we do not impose
momentum constraints in the supporting phases. In flight phases, however, gravity is the only external
force. Thus the linear momentum and the net angular momentum of the entire body must satisfy
Ṗ = mallc̈ = mallg and L̇ = ∑

i mi(ri − c) × (r̈i − c̈) = 0 (point mass model assumed), where mall is the
total mass and c is the center of mass of the entire figure [Liu and Popović 2002]. Hence, we formulate
the momentum constraints during flight phases as

HM (q, q̇, q̈) =
[

c̈ − g∑
i mi(ri − c) × (r̈i − c̈)

]
, (11)

with ZT = 0 in this case.

5. KALMAN FILTER-BASED MOTION EDITING

Once the constraints are formulated as shown in Equation (1), the task of modifying the original motion
to meet the constraints is accomplished using Kalman filtering. The important decisions in our tailoring
of Kalman filtering to motion editing problem are (1) the choices for the process and measurement model,
and (2) using the unscented Kalman filter, rather than the extended Kalman filter. We begin this section
with a brief explanation of how Kalman filtering works. Then we show how the motion editing problem
is formulated in the framework of Kalman filtering.

5.1 How Kalman Filtering Works

Kalman filtering is the problem of sequentially estimating the states of a system from a set of mea-
surement data available online [Maybeck 1979; Welch and Bishop 2001]. The behavior of a Kalman
filter is largely determined by defining the process model xk+1 = f(xk , vk) and the measurement model
zk = h(xk , nk), where xk represents the state of the system at time tk , zk is the observed measurement,
and vk and nk are the process and measurement noise. For example, if we are to model the freefall of
a stone that is being recorded by a digital camera, xk is the random variable that represents the 3D
position of the stone, Pxk (which will appear in the subsequent descriptions) is the covariance of xk ,
and zk represents the 2D position of the stone recorded in the photograph. We define the process model
f so that it predicts the next state from the value of the current state (using knowledge of Newtonian
mechanics). The uncertainties due to factors such as air resistance and wind are modeled by vk , which
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is assumed to follow a Gaussian distribution. We define the measurement model h such that it describes
in principle the relationship between the state xk and the measurement zk . nk models the measurement
errors, and is also assumed to follow a Gaussian distribution. The Kalman filter recursively estimates
the mean and covariance of the state using the following predictor-corrector algorithm.

Predict (time update) Correct (measurement update)
x̂−

k = f(x̂k−1, 0) x̂k = x̂−
k + Kk(zk − h(x̂−

k , 0))

The time update predicts the a priori estimate x̂−
k , and the measurement update corrects x̂−

k by referring
to the new measurement zk to obtain the a posteriori estimate x̂k . The Kalman gain Kk is determined
from the process and measurement models according to the procedure described in Section 5.3.

5.2 Our Formulation of Motion Editing Problem

When formulating the constraint-based motion editing problem using a Kalman filter, the most sub-
stantial step is the determination of the process and measurement models. We define the process model
as x̂−

k = [qk q̇k q̈k], where qk = q(tk) is the value of q at the discrete time step tk . In this case,
function f does not depend on the previous state x̂k−1, but comes directly from the original motion. We
use Z in Equation (1) as the measurements, and denote the value of Z at time tk as Zk . We define the
measurement model as H(q, q̇, q̈) of Equation (1).

The rationale behind the definition outlined above is that the original motion contains excellent
kinematic and dynamic motion quality, so by starting from this motion we intend to preserve its quality
in the final motion.

5.3 Motion Editing Algorithm Based on the UKF

Since the constraint functions in Equation (2) are highly nonlinear, the original version of the Kalman
filter, which was designed for linear systems, does not properly handle the motion editing problem
considered here. The extended Kalman filter (EKF) was developed to handle nonlinearity through a
Jacobian-based approximation, but recently the unscented Kalman filter (UKF) was proposed to better
handle severe nonlinearity.

The UKF was first proposed by Julier et al. [1997], and further developed by others [Wan and van der
Merwe 2000; van der Merwe and Wan 2001]. The basic difference between the EKF and the UKF
lies in the way they handle nonlinear functions. The computational core of the Kalman filter consists
of the evaluation of the posterior mean and covariance when a distribution with the prior mean and
covariance goes through the nonlinear functions of the process and the measurement models.

As shown in Figure 4(b), the EKF approximates the posterior mean by evaluating the nonlinear
function at the prior mean, and approximates the posterior covariance as the product of the Jacobian
and the prior covariance. However, it has been reported that this method can lead to inaccuracy and
occasional divergence of the filter [Julier and Uhlmann 1997; Wan and van der Merwe 2000].

The UKF addresses this problem using a deterministic sampling approach that approximates the
posterior mean and covariance from the transformed results of a fixed number of samples as shown in
Figure 4(c). Given a nonlinear function h(x) = z defined for n-dimensional state vectors x, the UKF
first chooses 2n+1 sample points Xi that convey the prior state distribution (mean and covariance of x),
after which it evaluates the nonlinear function h at these points, producing the transformed sample
points Zi. The UKF then approximates the posterior mean and covariance by calculating the weighted
mean and covariance (Ẑ−

k and P̂zz in Step 4 of the procedure summarized below) of the transformed
sample points, which is accurate to the 2nd order for any nonlinearity as opposed to the 1st order in the
EKF. The superior performance of the UKF over the EKF is thoroughly discussed in Wan and van der
Merwe [2001], along with the quantitative analysis on a broad class of nonlinear estimation problems.
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A Physically-Based Motion Retargeting Filter • 107

Fig. 4. Comparison of mean and covariance approximations after the nonlinear transformation h is applied (excerpted from
Wan and van der Merwe [2001]): solid, dotted, dashed lines in the transformed results correspond to the ideal-, EKF-, and
UKF-transformed mean and covariance, respectively. In (b), J is the Jacobian matrix of h.

Now, we summarize the steps involved in the proposed UKF-based constraint solver. The inputs fed
into the solver at each frame k are the source motion [qk q̇k q̈k] and the constraint goal Zk .

For each kth frame,

(1) Using the process model definition discussed in Section 5.2, the prediction step is straightforward3:

x̂−
k = [qk q̇k q̈k]

P̂−
k =




Vx.pos · · · 0
Vx.vel

0 · · · Vx.acc


 , (12)

where Vx.∗ are the process noise covariances. Since our process model is not defined in terms of the
previous state, P̂−

k does not depend on P̂k−1. Therefore, we simply use the constant matrix shown
above for every frame.

(2) We construct (2n + 1) sample points from x̂−
k and P̂−

k by

X0 = x̂−
k W0 = κ/(n + κ) i = 0

Xi = x̂−
k + (

√
(n + κ)P̂−

k )i Wi = 1/{2(n + κ)} i = 1, . . . , n

Xi = x̂−
k − (

√
(n + κ)P̂−

k )i Wi = 1/{2(n + κ)} i = n + 1, . . . , 2n,

(13)

where κ is a scaling parameter, (
√·)i signifies the ith row or column of the matrix square root, and

Wi is the weight associated with the ith sample point, chosen such that ∑2n
i=0 Wi = 1. Our choice for

κ is based on Wan and van der Merwe [2001].

3The state vector and covariance matrix contain only positional components when only kinematic constraints are involved.
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(3) We transform the sample points in Step 2 through the measurement model defined in Section 5.2
to obtain

Zi = H(Xi) i = 0, . . . , 2n. (14)

(4) The predicted measurement Ẑ−
k is given by the weighted sum of the transformed sample points,

and the innovation covariance and the cross-covariance are computed as

Ẑ−
k = ∑2n

i=0 WiZi

P̂zz = ∑2n
i=0 Wi(Zi − Ẑ−

k )(Zi − Ẑ−
k )T + Nz

P̂xz = ∑2n
i=0 Wi(Xi − x̂−

k )(Zi − Ẑ−
k )T ,

(15)

where Nz is the measurement noise covariance.

(5) The Kalman gain and the final state update are given by

Kk = P̂xzP̂−1
zz

x̂k = x̂−
k + Kk(Zk − Ẑ−

k ).
(16)

The behavior of the filter can be controlled by adjusting the following parameters:

—The process noise covariance Vx.∗, which is a diagonal matrix. Each diagonal element of this matrix
represents the degree of uncertainty of the corresponding DOF. The values of these diagonal elements
are related to the degree of displacement that occurs in the filtering process. A larger value of a
particular element results in a bigger displacement of the corresponding DOF.

—The measurement noise covariance Nz, which is also a diagonal matrix. Each diagonal element is
related to the rigidity of one of the constraints on the motion. Typically, these elements are set to
zero, treating the constraints as perfect measurements. Using nonzero diagonal elements is useful
when two constraints conflict with each other, because the constraint with the larger covariance (soft
constraint) yields to the one with the smaller covariance (hard constraint).

6. LEAST-SQUARES FILTER

The Kalman filter described in the previous section handles q, q̇, and q̈ as independent variables.
As a result, the filtered result may not satisfy the relationship between the position, velocity, and
acceleration. The role of the least-squares filter is to rectify any corruption of this relationship that
occurred during Kalman filtering.4 Because the least-squares filter is basically a curve fitting procedure,
it has a tendency to smooth out the jerkiness that may be introduced by the per-frame handling of the
motion data.

4If only kinematic constraints are involved, the least-squares filter need not be applied. However, even in this case, the animator
may choose to apply the least-squares filter to eliminate potential artifacts arising from the use of a per-frame approach.
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To find the control points (in 1D) that fit the complete profile q̆ of a particular DOF, we formulate a
B-spline curve that conforms to

B c = q̆,

B =




B1(t1) · · · BM (t1)
...

...
B1(tN ) · · · BM (tN )
Ḃ1(t1) · · · ḂM (t1)

...
...

Ḃ1(tN ) · · · ḂM (tN )
B̈1(t1) · · · B̈M (t1)

...
...

B̈1(tN ) · · · B̈M (tN )




, c =




c1

...
cM


 , q̆ =




q1
...

qN

q̇1

...
q̇N

q̈1

...
q̈N




, (17)

where Bi(t), Ḃi(t), and B̈i(t)(i = 1, . . . , M ) are the B-spline basis functions and their first and second
derivatives, respectively, and the scalar values ci are the control points. For a 3 DOF joint, we need to
formulate four such equations corresponding to the four components of the quaternion representation,
and renormalize the resulting values to maintain the unity of the quaternions. The spacing of the control
points along the time axis can be determined by the user, possibly by considering the distribution of
frequency components in the motion. In our experiments, we place a control point at every fourth frame
in common cases, but when the smoothing artifact in high-frequency motions is visible, we place a
control point at every second frame.

The above problem is that of an over-constrained linear system. Therefore, we find the control points
c that best approximate the given data q̆ by minimizing the weighted objective function

(B c − q̆)T W(B c − q̆), (18)

where W is a 3N ×3N diagonal matrix that controls the relative influences of q, q̇, and q̈. The classical
linear algebra solution to this problem is

c = (BT W B)−1W q̆ = B# q̆, (19)

where B# is the weighted pseudo-inverse matrix of B, and is easily computed because BT W B is a
well-conditioned matrix. Finally, we obtain the least-squares filtered motion by evaluating the B-spline
curves at the discrete time steps.

Note that B, and accordingly B#, are band-diagonal sparse matrices. This means that each control
point in Equation (19) is determined by the section in q̆ that corresponds to the nonzero entries of
B#. This locality suggests that the control points should be computed from the motion data within the
window shown in Figure 5, which moves along the time axis as the Kalman filter advances. Suppose
c1, c2, . . . , ci−1 have already been computed. When the center of the window of width W is positioned
over the control point ci, we determine ci using the portion of q̆ that exists within the window. This
scheme is equivalent to the global fitting described previously, if the window size is large enough. The
plot of accuracy versus window size depends on the order and knot-interval of the B-spline curve. In
our experiments, W = 64 gave almost the same accuracy as the global fitting.

ACM Transactions on Graphics, Vol. 24, No. 1, January 2005.



110 • S. Tak and H.-S. Ko

Fig. 5. Sweeping of the Kalman filter (the thick vertical line) and the least-squares filter (the rectangle centered at the figure).

7. DISCUSSION

In this section, we analyze our algorithm in comparison with previous approaches and determine its
limitations as well as its strengths. This will help us to better understand what type of motion this
technique is best suited for.

Statistical inference vs. derivative-based optimization. One of the main differences between our algo-
rithm and the previous methods is the statistical approach we take in dealing with the nonlinearity of
constraints. While derivative-based optimization uses Jacobians or Hessians of the constraints and ob-
jective function, our statistical method approximates the nonlinear function by evaluating the function
values on a set of samples, which can be viewed in some sense as statistical derivatives. Even though
the derivative-based approach theoretically has the same expressive power, in practice, we found that
the statistical approach provides more flexibility to address stiff problems.

Local (per-frame) vs. global method. Another key difference, which might be the most significant
reason our method works fast, is that the method splits the given motion editing problem into per-frame
pieces with post filtering, instead of casting it as one large optimization problem as in the previous
methods. A limitation of our per-frame approach is that it can not make any dynamic anticipation
on a large timescale. Therefore, the algorithm is not suited for editing a motion that requires global
modification on the whole duration of the motion. For example, to generate the motion of punching
an object with a dynamic constraint that the final speed of the fist should be considerably larger than
that of the original motion, a large pull-back action is expected long before the arm makes the hit.
However, our algorithm would attempt to modify the motion only in the neighborhood of the final
frame. In fact, other optimization techniques that use local derivatives may have the potential to suffer
this locality problem. In this work, the problem can be circumvented by providing a rough sketch of the
desired motion as a new source motion. We call it a kinematic hint. Kinematic hints can be an effective
means to produce the desired motion when our method is interactively used by an animator who has
an intuitive idea of the form of the final motion.

Filter tuning. The filter parameters (Vx.∗ and Nz in the UKF, and the weight parameter W in the least-
squares filter) significantly affect the filtering performance. Therefore, unless the parameter values are
carefully chosen through consideration of the type of constraints and target motion, the filter may not
work properly. For example, too large Vx.∗ may lead to filter divergence, and too small Vx.∗ may result in
slow convergence. Choosing appropriate filter parameters required trial-and-error procedures at first,
but soon we found that the following guidelines work well in most examples: Vx.pos is typically chosen
from the range 10−9∼10−10, and we use Vx.vel = αVx.pos and Vx.acc = α2Vx.pos, where α =10∼100. The values
of Nz are set to zero in most cases. One exception to this rule is when the current constraint goal is
too far, in which case we initially set Nz to a small, but nonzero value (e.g. 10−10), and then adaptively
decrease them to zero. Finally, we found that the weight parameter, W = diag[I, βI, β2I], best scales
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the relative influences of q, q̇, and q̈ when β ≈ 0.1. In fact, all the examples presented in this article
are made based on this guideline.

Convergence problem. Because of the nonlinear iterative nature of the problem, convergence is an
important issue. It is virtually impossible to characterize the analytical condition under which the
repeated applications of the Kalman filter and least-squares filter converge. According to our experi-
ments, when only kinematic constraints exist, the technique produces a convergent solution with one
or, at most, two applications of the filter. On the other hand, when we edit a motion involving dynamic
constraints, the effects of the Kalman filter on position, velocity, and acceleration are, in part, cancelled
by the following least-squares filter. Especially when the target motion is highly dynamic (e.g. such mo-
tions as in Liu and Popović [2002] and Fang and Pollard [2003] in which the velocity and acceleration
can have severely undulating patterns), the cancellation effect of the two filters may become dominant,
and our method may not able to find a convergent solution. However, it is worth noting that, in most
cases, we could find the filter parameters and/or kinematic hints such that 3-5 filter applications attain
a reasonable level of dynamic quality.

Dynamic quality reduction in the final filter application. While the resulting motion from the re-
peated filter applications possesses desired dynamic quality, the application of the last least-squares
filter can ruin the kinematic constraints to a noticeable degree. In such a case, we run the Kalman
filter with the dynamic constraints turned off, which produced kinematically accurate motion, poten-
tially destroying the previously attained dynamic quality. According to the experiments, however, the
dynamic quality reduction was not significant.

Per-frame constraints generation. The global method requires the animators to set only high-level
goals (such as a jumping height); the rest is generated by the algorithm. On the other hand, our per-
frame algorithm requires the animators to supply kinematic and dynamic constraints for each frame
(in the form of trajectory, etc.). For example, to make the character kick a certain object, the animator
has to construct the desired trajectory that passes the object by modifying the originally given foot
trajectory. It is an extra burden for the animator compared to the global method. On the other hand, it
can be viewed as a means to control the details of the (kicking) motion.

8. RESULTS

Our motion editing system was implemented as a Maya plug-in on a PC with a Pentium-4 2.53 GHz
processor and a GeForce 4 graphics board. All the motion sequences used were captured at 30 Hz. The
human model had a total of 54 DOFs, including 6 DOFs for the root located at the pelvis. The root
orientation and joint angles were all represented by quaternions.

Below, we refer to the filtering with only kinematic constraints as kinematic filtering and denote
i consecutive applications of the filter by i(K), and we refer to the filtering with both kinematic and
dynamic constraints as dynamic filtering and denote j consecutive applications of the filter by j (D).
In the following experiments, we used the full set of DOFs in the kinematic filtering, but omitted
several less influential joints (for example, wrists, elbow, ankles, and neck) in the dynamic filtering
(total 27-DOFs) to improve the performance.

This section reports the results of five experiments. The filter applications used and the resulting
frame rates in these experiments are summarized in Table I. The decision on the number and types of
filter applications are up to the users. They can apply the filtering repeatedly until they find the result
satisfactory, and also they can start by imposing kinematic hint for better performance. The animations
of the results can be found at http://graphics.snu.ac.kr/∼tak/filter.htm.

Dancing (on-line kinematic retargeting). Referring to Animation 1A (Figure 6), we retargeted the
dancing motion of the middle character to the characters on the left (shorter limbs and longer torso) and
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Table I.
motion # frames # frames/knot # filtering operation average frame rate

dancing 660 1(K) 150.0
wide steps 260 4 2(D) + 1(K) 15.4
golf swing 216 2 1(K) + 3(D) + 1(K) 15.2
limbo walk 260 4 1(K) + 2(D) + 1(K) 13.7
jump kick 152 2 3(D) + 1(K) 11.3

Summary of the experimental conditions and resulting frame rates. Frame rates were estimated from
pure computation time excluding the visualization time

Fig. 6. Dancing: A dancing motion of the character in the middle is retargeted to the other characters online.

right (longer limbs and shorter torso). The foot trajectories of the source character were used without
scaling as the kinematic constraints of the target characters. The height differences were accounted for
by raising or lowering the root of the source character by a constant amount. In this experiment, a single
application of the Kalman filter (without the least-squares filter) generated the target motions without
any artifacts. Animation 1B is the real-time screen capture during the production of Animation 1A. In
other examples, which are not included in the article, if the end-effector goal was too far or followed
a severely nonsmooth path, Kalman filtering alone could produce temporal artifacts. In such cases,
application of the least-squares filter solved the problem, although it created a delay of about one
second. In numerous experiments, the kinematic filtering worked stably and robustly.

Wide Steps. In this experiment, we considered the problem of converting the normal walking steps
in Animation 2A into the sequence of wide steps taken to go over a long narrow puddle. The kinematic
filtering produced the physically implausible result shown in Animation 2B (Figure 7(a)). To make
the motion physically plausible, we added a balance constraint, and applied dynamic filtering twice,
followed by a final kinematic filtering to impose the foot constraints (2(D) + 1(K)); these calculations
produced Animation 2C (Figure 7(b)). In this animation, the character now sways his body to meet
the balance constraints. The previous two results are compared in Animation 2D. Animation 2E is the
real-time screen capture during the production of the above animations.

Golf Swing. This experiment shows how our technique retargets the golf swing shown in Animation
3A (Figure 8(a)) when a heavy rock (8kg, which is 1/8 of the character’s total mass) is attached to the
head of the club. We imposed balance constraints, but did not impose torque constraints because simply
raising the club immediately causes torque limit violations at the shoulder and elbow. To facilitate
convergence, we provided a kinematic hint, which is actually one kinematic filtering 1(K), mainly
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Fig. 7. Wide Steps: (a) kinematic-filtered (b) dynamic-filtered.

Fig. 8. Golf Swing: (a) original motion (b) with a heavier club (dynamic-filtered).

consisting of the shift of the pelvis with both feet fixed (Animation 3B). 3(D) + 1(K) filter applications
onto the kinematic hint produced Animation 3C (Figure 8(b)). In the resulting motion, the upper-body
of the character makes a large movement to counterbalance the heavy club. The original and retargeted
motions are compared in Animation 3D.

Limbo Walk. In this experiment, the walking motion shown in Animation 2A is retargeted to a
limbo walk (Animation 4A = Animation 2A). We placed a limbo bar at 4/5 of the height of the character.
Balance constraints, along with a (soft) kinematic constraint on the head height,5 produced Animation
4B (Figure 9(a)), which is obviously not a limbo motion. To fix the problem, we provided a kinematic
hint. A further 2(D) + 1(K) filter application produced the realistic limbo walk shown in Animation 4C

5The height was lowered a few steps ahead.
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Fig. 9. Limbo Walk: dynamic-filtered (a) without and (b) with kinematic hint.

Fig. 10. Jump Kick: (a) original motion (b) when a load is attached (dynamic-filtered).

(Figure 9(b)). In another experiment, we animated the limbo motion of a character whose torso was
twice as heavy as that of the original character, and we imposed the torque limit constraint. In this
setup, the character could not bend the torso to the same extent as in the original case. Thus the
kinematic constraint, which was the soft constraint, could not be satisfied (Animation 4D).

Jump Kick. This experiment shows how our motion editing technique adjusts the jump kick motion
shown in Animation 5A (Figure 10(a)) to allow for the addition of a 10kg sandbag to the right calf of
the character. The motion consists of a supporting phase, a flight phase, and another supporting phase.
We imposed balance and torque constraints along with foot position constraints during the supporting
phases, and torque and momentum constraints during the flight phase. Since the position of the landing
foot at the end of the flight phase is affected by the attached weight, we adjusted the footprints to account
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for this. Without any kinematic hints, the algorithm produced a convergent result after 3(D)+1(K) filter
applications. In the resulting motion, shown in Animation 5B, it is evident that the character cannot
lift the weighted leg as high as the original character due to the torque constraints.6 The momentum
constraints make the upper body bend forward to compensate for the momentum change in the right
leg (Figure 10(b)).

9. CONCLUSION

In this article, we have presented a novel interactive motion editing technique for obtaining a physically
plausible motion from a given captured or animated motion. To date, most methods for carrying out
such motion retargeting have been formulated as a spacetime constraints problem. In contrast to these
previous methods, our method is intrinsically a per-frame algorithm; once the kinematic and dynamic
constraint goals are specified, the proposed algorithm functions as a filter that sequentially scans the
input motion to produce a stream of output motion frames at a stable interactive rate.

The proposed method requires interactive tuning of the filter parameters to adapt it to the differ-
ent motions. Several (consecutive) applications of the filter may be required to achieve the desired
convergence or quality, because the filter works as an enhancement operator. Experiments on a large
variety of motions revealed that, in most cases, 3-5 applications are sufficient to produce realistic
motions.

The method works in a scalable fashion. It provides various ways to trade off run time and animator
effort against motion quality. (1) Animators can interactively control the type and amount of kinematic
and dynamic constraints to shape the desired motion. (2) Animators can control the number of times
the filter is applied according to the final quality that is required. (3) Animators can avoid the potential
problem of slow convergence by providing a kinematic hint.

This work takes an exciting step forward in the constraint-based motion editing. Now, physically
plausible motions can be produced by filtering existing motions on a per-frame basis.
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LIU, C. K. AND POPOVIĆ, Z. 2002. Synthesis of complex dynamic character motion from simple animations. ACM Trans.

Graph. 21, 3, 408–416.
LIU, Z., GORTLER, S. J., AND COHEN, M. F. 1994. Hierarchical spacetime control. In Proceedings of ACM SIGGRAPH 94. Computer

Graphics Proceedings. ACM Press. 35–42.
MAYBECK, P. S. 1979. Stochastic Models, Estimation, and Control. Vol. 1. Academic Press, Inc.
OSHITA, M. AND MAKINOUCHI, A. 2001. A dynamic motion control technique for human-like articulated figures. In Proceedings

of Eurographics 2001.
POLLARD, N. S. AND BEHMARAM-MOSAVAT, F. 2000. Force-based motion editing for locomotion tasks. In Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA), Vol. 1. 663–669.
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